Как известно, все структурные компоненты биосферы тесно взаимосвязаны между собой сложными биогеохимическими циклами миграции веществ и энергии. Процессы взаимообмена и взаимодействия протекают на разных уровнях: между геосферами (атмо, гидро, литосферой), между природными зонами, отдельными ландшафтами, их морфологическими частями и т. д. Однако повсюду господствует единый генеральный процесс обмена веществом и энергией, процесс, порождающий явления разного масштаба — от атомарного до планетарного. Многие элементы, пройдя цепь биологических и химических превращений, возвращаются в состав тех же самых химических соединений, в которых они находились в начальный момент. При этом главной движущей силой в функционировании как глобального, так и малых (а также локальных) круговоротов, являются сами живые организмы.
Роль биогеохимических круговоротов в развитии биосферы исключительно велика, поскольку они обеспечивают многократность одних и тех же органических форм при ограниченном объеме исходного вещества, участвующего в круговоротах. Человечеству остается лишь поражаться тому, как мудро устроена природа, которая сама же подсказывает «непутевому Homo sapiens*, как следует организовать так называемое безотходное производство. Заметим однако, что в природе нет полностью замкнутых круговоротов: любой из них одновременно сомкнут и разомкнут. Элементарный пример частичного круговорота представляет собой вода, которая, испарившись с поверхности океана, частично снова попадает туда.
Между отдельными малыми круговоротами существуют сложные взаимосвязи, что в конечном итоге приводит к постоянному перераспределению вещества и энергии между ними, к устранению своего рода асимметричных явлений в развитии круговоротов. Так, в литосфере в избытке оказались в связанном состоянии кислород и кремний, в атмосфере в свободном состоянии — азот и кислород, в биосфере — водород, кислород и углерод. Нельзя не отметить также, что основная масса углерода сконцентрировалась в осадочных породах литосферы, где карбонаты аккумулировали основную массу углекислого газа, поступившего в атмосферу с вулканическими извержениями.
Нельзя забывать и о том, что между космосом и Землей существует теснейшая связь, которую с известной долей условности следует рассматривать в рамках глобального круговорота (поскольку, как уже отмечалось, он не является замкнутым). Из космоса на нашу планету попадает лучистая энергия (солнечные и космические лучи), корпускулы Солнца и других звезд, метеоритная пыль и т. д. Особенно важна роль солнечной энергии. В свою очередь, Земля отдает обратно часть энергии, рассеивает в космос водород и т. д.
Многие ученые, начиная с В. И. Вернадского, рассматривая глобальный биогеохимический круговорот элементов в природе как один из важнейших факторов поддержания динамических равновесий в природе, различали в процессе его эволюции две стадии: древнюю и современную. Есть основания полагать, что на древней стадии круговорот был иным, однако из-за отсутствия многих неизвестных (названий элементов, их массы, энергии и т. д.) смоделировать круговороты прошлых геологических эпох («былые биосферы») практически невозможно.
К этому следует добавить, что основную часть живого вещества составляют С, О, Н, N, главными источниками питания растений являются СОг, ШО и другие минеральные вещества. С учетом значимости для биосферы углерода, кислорода, водорода, азота, а также специфической роли фосфора, кратко рассмотрим их глобальные круговороты, получившие название «частных» или «малых». (Существуют еще локальные кругообороты, ассоциирующиеся с отдельными ландшафтами.)
Глобальный биогеохимический круговорот элементов